If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7k^2-40k-12=0
a = 7; b = -40; c = -12;
Δ = b2-4ac
Δ = -402-4·7·(-12)
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-44}{2*7}=\frac{-4}{14} =-2/7 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+44}{2*7}=\frac{84}{14} =6 $
| 1=-6x-89 | | 6(1+2x)+2=92 | | 16x-85=180 | | 2x-13=-9x-2+2x | | 3x=−21 | | y=4(3)+50 | | 113=-14x-55 | | 5x-7(-7+18)=226 | | -2(x2)=40 | | -6f+8=-52 | | (1)/(4)x+(1)/(2)=(1)/(4)-(1)/(2) | | y/3=-11 | | -8x+6=-7x+21 | | 6w-9=3w+12 | | ½x-3=3/2x+4 | | 0.3(2.4x-4)=4.92 | | 64=6x+10 | | n-18=30 | | 7m=-73.5 | | w+3-38=1-5/6 | | -7x+20=-7(x-11) | | 33=-2x+69 | | 4x+9-2x=11 | | 18x-18=3x+12 | | x+10.9+9.8=27.1 | | 7x-5/4x=3 | | -21t+4(t-5)=48 | | −8x+23−22x+9=182 | | 110=-5(8n-6) | | x-9/10=6 | | 24-3a=4a+4 | | 16-2d=5d+9 |